Linear systems on edge-weighted graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Systems on Edge-weighted Graphs

Let R be any subring of the reals. We present a generalization of linear systems on graphs where divisors are R-valued functions on the set of vertices and graph edges are permitted to have nonnegative weights in R. Using this generalization, we provide an independent proof of a Riemann-Roch formula, which implies the Riemann-Roch formula of Baker and Norine.

متن کامل

Edge searching weighted graphs

In traditional edge searching one tries to clean all of the edges in a graph employing the least number of searchers. It is assumed that each edge of the graph initially has a weight equal to one. In this paper we modify the problem and introduce the Weighted Edge Searching Problem by considering graphswith arbitrary positive integerweights assigned to its edges. We give bounds on the weighted ...

متن کامل

Anonymizing Edge-Weighted Social Network Graphs

The increasing popularity of social networks has initiated a fertile research area in information extraction and data mining. Although such analysis can facilitate better understanding of sociological, behavioral, and other interesting phenomena, there is growing concern about personal privacy being breached, thereby requiring effective anonymization techniques. If we consider the social graph ...

متن کامل

On (Semi-) Edge-primality of Graphs

Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an  ...

متن کامل

Hall Conditions for Edge-weighted Bipartite Graphs

A weighted variant of Hall’s condition for the existence of matchings is shown to be equivalent to the existence of a matching in a lexicographic product. This is used to introduce characterizations of those bipartite graphs whose edges may be replicated so as to yield semiregular multigraphs or, equivalently, semiregular edge-weightings. Such bipartite graphs will be called semiregularizable. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2016

ISSN: 0035-7596

DOI: 10.1216/rmj-2016-46-5-1559